Multi-user Channel Estimation in OFDMA Uplink Systems Based on Irregular Sampling and Reduced Pilot Overhead

Peter Fertl and Gerald Matz

Institute of Communications and Radio-Frequency Engineering
Vienna University of Technology
• OFDM / OFDMA / Channel Estimation - Uplink Case
• Motivation
• System Model
• Proposed Channel Estimator
• Discussion
• Simulation Setup & Results
• Conclusions
Orthogonal Frequency Division Multiplexing

Basic principle of OFDM

- transmit parallel data streams using several subcarriers
- design mutually orthogonal subcarriers which can be perfectly separated by the receiver
- establish orthogonality at the transmitter:
 discrete Fourier transform (DFT) serves as modulation
- maintain orthogonality after transmission:
 add a guard period between consecutive OFDM symbols
Orthogonal Frequency Division Multiplexing

- OFDM Baseband System

\[X[n, k] \xrightarrow{S/P} \text{IFFT} \xrightarrow{P/S} D/A \xrightarrow{h(t, \tau)} A/D \xrightarrow{S/P} Y[n, k] \]

- multiplicative input-output relation after demodulation (FFT)

\[Y[n, k] = H[n, k] X[n, k] + Z[n, k] \]

- benefits
 - high spectral efficiency
 - efficient implementation using FFT methods
 - simple one-tap equalization
Orthogonal Frequency Division Multiple Access

- subcarriers/groups of subcarriers/tiles are assigned to each user
- maintains orthogonality also in the uplink
Channel Estimation - Uplink Case

- each user transmits its data over a different channel
- base station estimates each user’s channel for coherent detection
- multiplex training data into each user’s transmit signal

→ pilot-aided channel estimation
Motivation

- accurate channel state information (CSI) for coherent detection
- flexible, adaptive resource allocation and pilot arrangement
- reduced pilot overhead
- state of the art – estimation on a per-tile basis:
 - LS-based interpolation
 - 1D and 2D MMSE-based estimators

cf. pilot arrangement in WiMAX 802.16a,e
OFDMA Uplink Model

- consider packet with K subcarriers & N OFDM symbols
- U active users transmit data on several dedicated tiles
- each tile may contain pilot symbols
 $\rightarrow P$ pilots irregularly distributed within a packet
- noisy linear relation of receive symbols $Y[n, k]$ and $X_u[n, k]$:

$$Y[n, k] = \sum_{u=1}^{U} H_{u}[n, k] X_{u}[n, k] + Z[n, k]$$
System Model

Channel Model

- consider spreading function $S_u[m, l]$ with
 - support $[0, M_\tau - 1] \times [-\frac{M_\nu}{2}, \frac{M_\nu}{2}]$
 - delay spread $M_\tau \ll K$, Doppler spread $M_\nu \ll N$

- related to channel coefficients $H_u[n, k]$ by 2D-FFT:

$$H_u[n, k] = \frac{1}{\sqrt{KN}} \sum_{m=0}^{M_\tau - 1} \sum_{l=-\frac{M_\nu}{2}}^{\frac{M_\nu}{2}} S_u[m, l] e^{-j2\pi \left(\frac{mk}{K} - \frac{ln}{N} \right)}$$

- allows interpretation of $H_u[n, k]$ as
 - 2-D lowpass function
 - 2-D trigonometric polynomial of degree $M_\tau \times (M_\nu + 1)$
Proposed Channel Estimator

General Idea

- separate channel estimation for each user (index \(u \) omitted)
- estimate CSI of each user over the whole OFDM packet (not only on a per-tile basis)
- view channel estimation as 2-D nonuniform least-squares (LS) reconstruction problem due to irregularly distributed pilots
- adapted version of ABC algorithm (Gröchenig & Strohmer, 2001)
- properties:
 - allows for irregular distribution of samples/pilots
 - computational complexity does not scale with \(P \)
 - no second-order statistics required
Proposed Channel Estimator

Description of Method

- calculate noisy pre-estimates at pilot positions:
 \[\hat{H}_{\text{pre}}[n_p, k_p] = \frac{Y[n_p, k_p]}{X[n_p, k_p]} \]

- LS-fit of a 2-D trigonometric polynomial of degree \(M_T \times (M_N + 1) \)

- leads to Toeplitz system with \(P \times M_T(M_N + 1) \)-matrix \(V \):
 \[V^H V \hat{s} = V^H \hat{h}_{\text{pre}} \]
 \[[V]_{p,q} \triangleq \frac{1}{\sqrt{KN}} e^{-j2\pi \left(\frac{m k p}{K} - \frac{l n p}{N} \right)} \]

- solve for \(\hat{s} \) (i.e., \(\hat{S}[m, l] \)) using conjugate gradient (CG)

- calculate \(\hat{H}[n, k] \)
Proposed Channel Estimator

Algorithm Summary

1. offline pre-processing:
 - compute Toeplitz matrix $\mathbf{T} = \mathbf{V}^H \mathbf{V}$ directly via 2D-FFT
 - store \mathbf{T} for fixed pilot arrangement

2. online pre-processing:
 - calculate $\hat{\mathbf{h}}_{\text{pre}}$
 - obtain $\mathbf{V}^H \hat{\mathbf{h}}_{\text{pre}}$ directly via 2D-FFT

3. CG iteration:
 - calculate approximate solution \hat{s}_r
 - fast matrix-vector multiplication via 2D-FFT due to Toeplitz structure of \mathbf{T}

4. post-processing: determine $\hat{\mathbf{h}}_r$ from \hat{s}_r via 2D-FFT

5. go to step 3 until $\sum_{p=1}^P |\hat{H}_r[n_p, k_p] - \hat{H}_{\text{pre}}[n_p, k_p]|^2 \leq \frac{\sigma_Z^2}{\sigma_X^2} P$
Discussion

- \(P \geq M_T(M_V + 1) \) required

- pilot arrangement, \(M_T \), and \(M_V \) play a critical role:
 \(\rightarrow \) influence condition number of Toeplitz matrix \(T \)

- CG convergence & channel estimation error depend on condition number of Toeplitz matrix \(T \)

- regularization is achieved via early termination of CG iterations

- computational complexity:
 - low complexity implementation based on FFTs
 - \(\mathcal{O}(M_T M_V \log(M_T M_V)) \) operations per iteration
Simulation Setup

- **coded OFDMA uplink system:**
 - system bandwidth \(B = 5 \text{ MHz} \), carrier frequency \(f_C = 2 \text{ GHz} \)
 - \(K = 512 \) subcarriers, \(N = 30 \) OFDM symbols/packet
 - tile size \(3 \times 4 \) symbols, at most one pilot per tile
 - rate-1/2 convolutional code

- **channel:**
 - doubly dispersive WSSUS Rayleigh fading channel
 - uniform delay & Doppler profile
 - terminal velocity of 100 km/h \((M_\nu = 2) \)

- **receiver:**
 - ZF equalizer
 - Viterbi decoder
Simulation Setup

- irregular pilot arrangement due to flexible resource allocation
- at most one pilot per tile
Simulation Results

BER/MSE versus SNR (9 Users, 120 Pilots/User, $M_T = 7$)

- proposed method close to ideal performance
- conventional LS estimator unable to track channel variations
- allocating more tiles while keeping P fixed does not degrade performance
Simulation Results

BER/MSE versus Delay Spread (SNR = 20 dB)

- BER/MSE advantage increases with P
- MSE degrades only gradually for increasing delay spread
- tradeoff: delay diversity \Leftrightarrow channel estimation accuracy
Conclusions

- 2-D channel estimation scheme based on irregular sampling
- Efficient implementation using CG iterations and FFTs
- Highly flexible user allocation and pilot arrangement
- Significant reduction of pilot overhead
- Excellent performance