MIMO Channel Models

N. Czink, D. Seethaler, G. Matz, M. Jachan, and F. Hlawatsch

Institute of Communications and Radio-Frequency Engineering
Vienna University of Technology

Outline

• The wireless channel
• Model categories
• Propagation-based models
• Analytical models
• Standardized models
• Which model is “best”?
Outline of Part 3

• The wireless channel
 – Multipath propagation
 – The double-directional propagation channel
 – Clusters and dispersion
 – Diversity

• Model categories
• Propagation-based models
• Analytical models
• Standardized models
• Which model is “best”?

Multipath Propagation (1)

• Interacting objects (scatterers) cause multipath propagation
• Movement of Tx, Rx, and/or scatterers causes Doppler shifts
• Each path has its reflectivity, delay, and Doppler shift

\[A_2 e^{j2\pi f_2 t} \delta(\tau - \tau_2) \]
\[A_0 e^{j2\pi f_0 t} \delta(\tau - \tau_0) \]
\[A_1 e^{j2\pi f_1 t} \delta(\tau - \tau_1) \]

\(v_{TX} \) \(v_{RX} \)

\(v_i \ldots \text{object velocity} \)
\(A_i \ldots \text{path weight} \)
\(\tau_i \ldots \text{path delay} \)
\(f_i \ldots \text{Doppler frequency} \)
The Double-Directional Radio Channel

- Multiple antennas enable spatial resolution:

 - Angles of departure (azimuth $\varphi_{T,i}$, elevation $\theta_{T,i}$)
 - Angles of arrival (azimuth $\varphi_{R,i}$, elevation $\theta_{R,i}$)

 \[h(t, \tau, \varphi_{T}, \varphi_{R}, \theta_{T}, \theta_{R}) = \sum_{i} A_i \delta(\tau - \tau_i(t)) \cdot \delta(\varphi_{T} - \varphi_{T,i}(t)) \cdot \delta(\varphi_{R} - \varphi_{R,i}(t)) \cdot \delta(\theta_{T} - \theta_{T,i}(t)) \cdot \delta(\theta_{R} - \theta_{R,i}(t)) \]

- Additional properties:
 - Angles of departure (azimuth $\varphi_{T,i}$, elevation $\theta_{T,i}$)
 - Angles of arrival (azimuth $\varphi_{R,i}$, elevation $\theta_{R,i}$)

Multiple Antennas

- MIMO channel:

 - Input-output relation:
 \[y(t) = \int_{-\infty}^{\infty} H(t, \tau) x(t - \tau) \, d\tau \]
 with $M_R \times M_T$ channel impulse response matrix
 \[H(t, \tau) = \begin{bmatrix} h_{1,1}(t, \tau) & \cdots & h_{1,M_T}(t, \tau) \\ \vdots & \ddots & \vdots \\ h_{M_R,1}(t, \tau) & \cdots & h_{M_R,M_T}(t, \tau) \end{bmatrix} \]
Multipath Clusters

- **Clusters** lead to temporal and angular dispersion:
 - Tx cluster spreads
 - Rx cluster spreads
 - Rx azimuth spread

- **Global dispersion parameters:**
 - rms delay spread
 - rms angular spreads

- **Cluster dispersion parameters:**
 - cluster rms delay spread
 - cluster rms angular spread

 Global dispersion parameters are no meaningful description of propagation environments!

Observing Clusters

- Indoor scenario, NLOS, Laboratory environment
- Rx fixed, Tx is moved through the room
Diversity is the presence of multiple copies of the transmitted signal

- at different times (time diversity),
- at different delays or frequencies (delay/frequency diversity),
- in space (spatial diversity),

where the different paths are **fading independently**.

Diversity Example

Demonstrating spatial diversity:
- only weak eigenvalues fade
- strong eigenvalues stay constant

Video of the environment

Source: Tokyo Institute of Technology
Outline

- The wireless channel
- Model categories
- Propagation-based models
- Analytical models
- Standardized models
- Which model is “best”?

Why do we need channel modelling?

- For MIMO deployment and network planning
 - site specific
- For system design and test
 - site independent

...but not: one model serves all
MIMO Model Categories

System parameters
- Antenna configuration
- Bandwidth

Propagation-based models
Focus: physical wave propagation
- **deterministic:**
 - ray launching / tracing
 - stored measurements
- **geometry-based stochastic:**
 - GSCM
 - COST 259
 - COST 273

Analytical Models
Focus: MIMO channel matrix
- **correlation-based:**
 - full correlation model
 - iid model
 - Kronecker model
 - Weichselberger model
- **propagation-motivated:**
 - virtual channel representation
 - finite scatterer model

Standardized models:
- 3GPP SCM
- IEEE 802.11n
- IEEE 802.16 WiMAX

Outline

- The wireless channel
- Model categories
- Propagation-based models
 - Deterministic
 - Geometry-based stochastic
- Analytical models
- Standardized models
- Which model is “best”?
Propagation-Based Models

• Modelling of all system parameters possible
 – Time-variance (moving Tx/Rx/scatterers)
 – Frequency selectivity
 – Spatial structure

• Important for link-level simulations and hardware channel simulators

• More art than science
 – Who decides on the scenario?
 ⇒ Canonical scenarios

Deterministic Models – Ray Launching / Tracing

• Model environment by geometry, place scatterers
• Launch or follow rays from Tx to Rx
Deterministic Models – Stored Measurements

- Conduct measurements
- Store impulse responses
- Use impulse responses in channel simulator “Playback Simulations”

Question: Which scenario shall be used?

Geometry-Based Stochastic Channel Models (GSCM)

- Model environment by scattering clusters placed in space
- Within clusters, paths are modelled by statistic means
- Use ray tracing to calculate channel response
COST 259 Approach

- Single-bounce model, no scatterers around BS
- Fixed relationship between AOD, AOA, and delay
- Well suited for smart antenna systems, but nature is not single bounced

AOA: angle of arrival; AOD: angle of departure; BS/MS: base/mobile station

COST 273 Approach (1)

- Model based on clusters
- 3 different cluster types
- Clusters are placed geometrically and stochastically
COST 273 Approach (2)

- Local clusters around MS and/or BS may occur, depending on the scenario

- Any combination of delay (τ) and angles (φ_T, φ_R, θ_T, θ_R) can be modelled, not limited to double scattering

- All parameters are given per cluster; there are no global spreads

- Direct coupling between AOAs and AODs; no “Kronecker” structure

Outline

- The wireless channel
- Model categories
- Propagation-based models
 - Analytical models
 - Correlation-based
 - Propagation-motivated
- Standardized models
- Which model is “best”??
Analytical Channel Models

- Analytical channel models focus on modelling only the spatial structure (up to now)

- **Narrow-band models**
 - Delay spreads neglected
 - No Doppler shifts possible

- Number of antennas is predetermined

- Well suited for testing signal processing algorithms

- Can be used in combination with propagation-based models

Analytical Channel Models – Overview

Correlation-based models

- Full-correlation model:
 \[H = \text{unvec}\left(R_{h}^{1/2}\text{vec}(G)\right) \]

- Weichselberger model:
 \[H = U_{RX}(\tilde{\Omega}_{WB} \odot G)U_{TX}^{T} \]

- Kronecker model:
 \[H = c \cdot R_{RX}^{1/2}G(R_{TX}^{1/2})^{T} = U_{RX}(\tilde{\Omega}_{Kron} \odot G)U_{TX}^{T} \]

- iid model ("canonical model"):
 \[H = G \]

Propagation-motivated models

\[H = A_{RX}(\tilde{\Omega}_{cpl} \odot G)A_{TX}^{T} \]

… to be explained presently!
Channel Correlation Matrix

- The channel correlation matrix
 \[R_h = E\{hh^H\}, \quad \text{with} \quad h = \text{vec}(H) \]
 sufficiently characterizes the spatial structure of the channel. Size of \(R_h \):
 \[M_T M_R \times M_T M_R \]
 Note: The \(\text{vec}(\cdot) \) operator stacks the columns of a matrix into a vector.

- Underlying assumption: Rayleigh fading channel
 \[h \sim \mathcal{CN}(0, R_h) \]

- If this assumption is not fulfilled, all the following models will inevitably fail!

\(\mathcal{CN}(\mu, R) \)… distributed circular symmetric complex gaussian with mean \(\mu \) and covariance \(R \)

Correlation-Based Analytical Models

- Full-correlation model
 - Very complex
 - Most accurate

- Weichselberger model
 - Good approximation
 - Good performance-complexity compromise

- Kronecker model
 - “Separates” channel into Tx and Rx sides
 - Very limited validity

- iid model
 - Most simple
 - No physical relevance
Full-Correlation Model

- Synthetic channel realizations consistent with channel correlation matrix R_h can be generated by
 \[\mathbf{H} = \text{unvec} \left(R_h^{1/2} \mathbf{g} \right), \quad \text{with } \mathbf{g} \sim \mathcal{C}\mathcal{N}(0, \mathbf{I}), \]
 where \mathbf{g} is an iid white Gaussian random vector.

- Can be interpreted as a noise-coloring process:

```
g \rightarrow R_h^{1/2} \rightarrow h \rightarrow \text{unvec}(\cdot) \rightarrow H
```

iid Model

- All elements of the channel matrix \mathbf{H} are
 - complex Gaussian
 - independent identically distributed (iid) \Rightarrow uncorrelated

- Channel correlation matrix is modelled as
 \[R_h = \rho \cdot \mathbf{I} \]

- Channel realizations can be generated by
 \[\mathbf{H} = \sqrt{\rho} \cdot \mathbf{G}, \quad \text{with } \mathbf{G} \sim \mathcal{C}\mathcal{N}(0, \mathbf{I}) \]

- Implications:
 - no spatial structure is modelled
 - only valid for (very) rich scattering environments

 BUT
 - cannot even be validated by measurements in indoor environments!
Kronecker Model – Definition

- Full-correlation matrix has too many parameters
 - treat correlation independently at Tx and Rx:
 - Transmit correlation matrix: $R_{TX} = E\{H^H H\}$
 - Receive correlation matrix: $R_{RX} = E\{HH^H\}$

- Channel correlation matrix is modelled by
 \[
 R_h \approx \frac{1}{\sqrt{\text{tr}\{R_{RX}\}}} R_{RX} \otimes R_{TX}^T \quad \otimes \ldots \quad \text{Kronecker matrix product}
 \]

- Channel realizations can be generated by
 \[
 H = c \cdot R_{RX}^{1/2} G R_{TX}^{1/2}, \quad \text{with} \quad G \sim \mathcal{CN}(0, I)
 \]

Kronecker Model – Implications

- Kronecker model holds true only if channel can be separated into Tx side and Rx side
- Rx directions are independent of Tx directions
- Only satisfied for few antennas or large antenna spacing
Weichselberger Model – Definition

- Relaxes assumptions of Kronecker model by using power coupling of Tx and Rx eigenmodes, defined by
 \[R_{TX} = U_{TX} \Lambda_{TX} U_{TX}^H \]
 \[R_{RX} = U_{RX} \Lambda_{RX} U_{RX}^H \]

- Power coupling of eigenmodes is described by coupling matrix
 \[\Omega_{WB} = \mathbb{E} \left\{ \left(U_{RX}^H H U_{TX}^* \right) \odot \left(U_{RX}^T H U_{TX} \right) \right\} \]

- Channel correlation matrix is modelled as
 \[R_h = \sum_{i=1}^{M_T} \sum_{j=1}^{M_R} \omega_{ji} (u_{TX,i} \otimes u_{RX,j})(u_{TX,i} \otimes u_{RX,j})^H, \quad \text{with } \omega_{ji} = (\Omega_{WB})_{j,i} \]

- Channel realizations can be generated by
 \[\Pi - U_{RX} (\tilde{\Omega}_{WB} \odot G) U_{TX}^T, \]
 where \(\tilde{\Omega}_{WB} \) is element-wise square-root of \(\Omega_{WB} \), and \(G \sim \mathcal{CN}(0, I) \)

\(\odot \ldots \) element-wise matrix product (Hadamard product)

Weichselberger Model – Parameters

What are “eigenmodes” and the coupling matrix \(\Omega_{WB} \)?

- Eigenmodes represent the scattering environment.
- The coupling matrix \(\Omega_{WB} \) describes the interaction betweenTx and Rx eigenmodes, indicating power coupling.
- Elements in \(\Omega_{WB} \) reflect the strength and direction of power coupling, with hot/cold representing strong/weak power.
Outline

• The wireless channel
• Model categories
• Propagation-based models
• Analytical models
• Standardized models
 – 3GPP SCM
 – IEEE 802.11n
 – IEEE 802.16 WiMAX (?)
• Which model is “best”?

3GPP Spatial Channel Model (SCM)

SCM is a geometry-based stochastic channel model, based on COST 259

1. Choose scenario
 Suburban macro Urban macro Urban micro

2. Determine user parameters
 - Angle spread
 - Lognormal shadowing
 - Delay spread
 - Pathloss
 - Orientation, Speed Vectors
 - Antenna gains
 - Angles of departure (paths)
 - Angles of departure (subpaths)
 - Path delays
 - Average path powers
 - Angles of arrival (paths)
 - Angles of arrival (subpaths)

3. Generate channel coefficients
 - Polarization
 - LOS (urban micro)
 - Far scattering cluster (urban macro)
 - Urban canyon (urban macro)

Options
IEEE 802.11n MIMO Channel Model – Principles

1. Choose scenario
 - Delay models (A-F)

2. Physical model
 - GSCM model
 - Cluster position is uniform in AOA/AOD
 - Cluster angular spreads are defined for different models
 - Add Doppler shift

3. Analytical model
 - Impose antenna structure
 - Use Kronecker model for each channel tap
 - Parameters are extracted from simulated physical model

802.11n MIMO Channel Model – Discrepancies

- GSCM model (physical model used) is well-defined and reasonable

 BUT

- Kronecker model (analytical model used) is only valid for small number of antennas and large antenna spacing

- Tap-wise Kronecker model is even more inaccurate

➤ Model is NOT WELL SUITED for indoor channels!
No MIMO model available at this point

Models already available for
 - pathloss
 - fading
 - delay spread
 - Doppler spread
Which Propagation-Based MIMO Model is “Best”?

- Physical (propagation-based) channel models
 - … should be motivated by measurements
 - … should be able to model the behavior of different environments
 - Accuracy-complexity tradeoff

- Challenges
 - Find one model that can be parameterized for many environments
 - Environments/scenarios must be parameterized accurately; parameters should be extracted from extensive measurements
 - Reduce complexity

- The “best” propagation-based model is not developed yet, but COST 273 may come close.

Which Analytical MIMO Model is “Best”?

- Analytical channel models
 - … should accurately reflect the spatial structure of the channel
 - … should be validated by measurements
 - Accuracy-complexity tradeoff

- Challenges
 - Optimal accuracy-complexity compromise
 - Extend analytical models to frequency-selective and time-varying channels

- The “best” analytical model?
 - There is no “best” one, but a “most suitable” one for specific requirements
 - When no specific requirements are in focus, the model should reflect the spatial structure accurately