Measurement-based Analysis of UMTS Link Characteristics

Advanced Wireless Communications 1 VU 389.168
28.10.2013
(http://www.nt.tuwien.ac.at/teaching/courses/winter-term/389168)
Repetition of the last lecture

- Fill out the missing bits ;)

![Diagram showing Super Frame, Timeslot, and Timeslot with intervals](image)
Repetition of the last lecture

- Fill out the missing bits ;}

![Diagram of Advanced Wireless Communications Layers][1]
Repetition of the last lecture

• Fill out the missing bits ;)

![Diagram showing the network structure with GGSN, SSGN, RNC, NodeB, IP Router, and NodeB]
Outline of this lecture

• Today: Errors on the link layer of UMTS!

• Ingredients
 - UMTS Network
 - UMTS Phone
 - DCH channel
 - TTI
 - TB

• Result:
 - Measured link error statistics
 - Input trace for modeling the link layer

TB Transport Block
TTI Transmission Time Interval
DCH Dedicated Channel
Repetition: UMTS Network
Repetition: Packetization in UMTS

- Dedicated channel for every transmission
 - We need packetization for
 - Error control
 - Synchronization
 - Start/End of Transmission

- UMTS R99 packetization example
Repetition: IP Based Services

- Service data transmission over IP
 - UDP
 - Packet oriented data transmission
 - Lost packets are not retransmitted (at UDP layer)
 - Services: Real-time, Streaming, ...
 - TCP
 - Connection oriented data transmission
 - No data is lost in the TCP layer (retransmission)
 - Services: File transmission, eMail, ...

![Diagram showing the layers of the network stack with UDP and TCP at the transport layer, and application services like streaming and eMail at the top.]
Data transmission over IP

- Data transmission over IP as a function of
 - Transport protocol (TCP, UDP, RTP, ...)
 - Routing protocol
 - Physical Layer
 - Technology (GPRS, UMTS)
 - Link layer errors patterns
- Link layer and TCP/UDP interact via packet loss
 - Link layer statistic depends on the type of link
 - Mobile communication: Burst errors!
 - Land line based communication: Congestion
- Congestion
 - Stable (quite) probability a packet is dropped
- Burst error
 - Bunch of packets is lost
Data transmission over IP - Link layer

- Optimize higher layer services
 - Link layer statistics

- Next steps: Link Layer
 - Measuring the link layer (UMTS)
 - Analyzing the link layer
 - Modeling errors on the link layer (DCH)

- Typical procedure to model a system
 - Measurement of available parameters
 - Statistical analysis (CDF, PDF, ...)
 - Model/Parameter definition
 - Fitting of model parameters
Basics on Data Measurements
Recording of Data

- Any Ground-truth is unknown!
- When to trust your measurements?
 - Never ...

Preparation
- Select a parameter
- Define a recording process
- Define valid range
 - e.g. Datarate < Max(Technology) = 384kbit/s

Extraction
- Extract this feature
- Verify the result
 - Active/passive
 - Can we explain the differences?

Post-Processing
- Filter for outliers
- Manipulation?
- Next parameter
• Many statistical methods assume a stable generation process
 – Cannot be proven on a limited trace
 – Can be rejected for a trace

• Methods
 • Correlation analysis
 • Recorded data points independent
 • Moving average
 • Indication that the mean is stable within the trace
 • Scaling test
 • Variance is reduced with increased sample size

Verification of Data
Repetition: PDF, CDF, cCDF, ...

- A CDF (Cumulative Distribution Function) is
 - $F_x(x) = P(X<x)$
 - Between 0 and 1
- A cCDF is
 - $1 - CDF$
 - often displayed in LogLog
- PDF, CDF, cCDF cannot be measured from a trace
 - Can only be estimated from measurements
 - Assumptions needed
- Fitting parameters to well known distributions
 - Allows to reduce model input parameters
 - Typically two parameters define the full PDF
 - Problem - how to fit and verify!

$$f(x) = \alpha \beta x^{\beta-1} e^{-\alpha x^\beta}$$
Whisker Plots: Just a matter of definition

IQR Inter Quartile Range
Quartile

Q1, Q2, Q3

-2.698σ -0.6745σ 0.6745σ 2.698σ

24.65% 50% 24.65%

68.27% 15.73% 15.73%
The Mean -or- One Value to Fit Them All

• Often, by the "mean value"
 - A synthetic indicator of "typical" behavior
 - Intuitively, the larger the sample size N (= number of data points), the closer the sample mean is to the "true" mean

• Example: sample extracted from a exp-neg distribution
What does the percentile value mean?

- Percentile is the value x below which a certain percent of the observation fall
 - The 98th percentile cuts off the top 2% of the peaks
 - Robust against outliers
Beware of Magnitudes (Flow Level Analysis: Tail)

- A heavy-tail is...
 \[P[X > x] \sim cx^{-\alpha}, \text{ as } x \to \infty, 0 < \alpha < 2 \]
 - Tail converges slowly,
 - Queuing does not work,
 - Traces are not heavy-tailed.

- Analysis method
 - Hill estimator
 - Scaling method

- Heavy-tailed flows
 - HTTP
 - TCP

\[E(X) = \int_{-\infty}^{\infty} xf(x) \, dx \]
\[\alpha = 1.09 \]
Summary: Measuring Data

- Verify recorded data based on system limits
- Verify recorded data based on statistical methods

- Derived parameters
 - The mean is just a number and a eCDF just a curve
 - Never process data unchecked

- Common source of problems
 - Not enough samples
 - Missing/Wrong filtering
 - Bi-modal distribution
 - Heavy tails

- More details on heavy-tails in the next lecture
Back to Topic ;}
• Perfect radio conditions
• Adjustable network parameters
• Reproducible results (?)

RNC: Radio Network Controller
SGSN: Serving GPRS Support Node
GGSN: Gateway GPRS Support Node
- TEMS mobiles
- Scenarios: static, non-static
- Service
 - UDP, downlink
 - 64, 128, 384kbit/s

RNC Radio Network Controller
SGSN Serving GPRS Support Node
GGSN Gateway GPRS Support Node
Link Layer Statistics: Network Configurations

- Function of the bearer speed
- Parameters
 - Spreading Factor (SF)
 - 8, 16, 32, 64 ...
 - Transport Block (TB) size
 - Payload, RLC header
 - Atomic data entity
 - Transmission Time Interval (TTI) configuration
 - 10, 20, 40, 80ms

- Tested configuration
 - 384, 128, 64kbit/s

- Defined scenarios
 - Static
 - Small-scale movements
 - Walking
 - Tramway
 - Car

384kbit/s bearer:

10ms = 1 TTI = 12 TBs, 336 bits per TB, SF 8

128kbit/s bearer:

20ms = 1 TTI = 8 TBs, 336 bits per TB, SF 16

64kbit/s bearer:

20ms = 1 TTI = 4 TBs, 336 bits per TB, SF 32
Link Layer Statistics: Link Error Analysis

<table>
<thead>
<tr>
<th>Scenario</th>
<th>P_e(TB)</th>
<th>P_e(TTI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>0.266%</td>
<td>0.472%</td>
</tr>
<tr>
<td>Small-scale</td>
<td>2.2%</td>
<td>2.34%</td>
</tr>
<tr>
<td>Large-scale</td>
<td>2.03%</td>
<td>2.63%</td>
</tr>
</tbody>
</table>

- **TB error probability**
 - Two scenarios: static, movement

- **Static**
 - OLPC does not meet set error target of 1%

- **Small-scale**
 - Power control cannot adjust to multipath propagation

- Considering a BSC P_e(TTI) should be around 15%!
Modeling Erroneous Channels
The Binary Symmetric Channel (BSC)

- Introduced by Shannon in 1948
- Simple channel for transmission of information
- Allows to transmit single bits
- Errors change $0 \rightarrow 1$ or vice versa
- Memory-less channel
 - Error events are independent
 - P_e for a given number of bits x can be calculated from $1-(1-p)^x$
The Binary Erasure Channel (BEC)

- Introduced by Elias in 1954
- Error state instead of bit flipping
- Memory-less channel
- Equivalent to an error source model
- No burst errors
The Gilbert Model

- Introduced in 1960 by Gilbert
- Two state model:
 - Good/Bad: no errors/ errors
- First order two state Markov model (more next time)
- Burst/gap length are independent from each other!

Gilbert-Elliot

\[
\begin{align*}
\text{P}(1|G) &= 0 \\
0 < \text{P}(1|B) &\leq 1
\end{align*}
\]
Error Models

- **BSC**
 - Bit inversion only

- **BEC**
 - Error indicator

- **Gilbert (Elliot)**
 - No Error / Error state

- **Memory less models**
 - Simple definition
 - Cannot reproduce correlation between error events

- **Model with memory state**
 - Parameter extraction from a trace is not unique
Back to Topic ;)
All Scenarios: Erroneous TBs/TTI

- Number of erroneous TBs in TTIs
 - Movement / Fading: all TBs lost in a TTI
 - No Movement / Reference scenario: shows only one lost TB/TTI
 - Introduce TTI-gap- and burstlength
Definition: TTI burst-/gaplength

- **TTI-gaplength:** is the number of subsequently received error-free TTIs.
- **TTI-burstlength:** is the number of subsequent erroneous TTIs.
- **Error cluster:** a group of erroneously received TTIs separated by at most L_c error-free TTIs (ITU !)
Mobile Scenario: TTI burst-/gaplength

- Non static
 - Error-free length of up to 700 TTIs
 - Error bursts up to 20 TTIs
Static Scenario: TB burst-/gaplength

- Static scenario
 - TB burst-/gaplength instead of TTI
 - Long and short gaplength
 - Static 3 = reference network = no impacts from radio!

![Graph showing empirical CDF for gaplength and burstlength with three static scenarios: static 1, static 2, and static 3.](image)
Link Layer Statistics: Power Control

- CDMA needs power control
 - UMTS: ILPC (fast changes) and OLPC (slow changes)
 - OLPC not defined in the standard
 - Algorithm might introduce correlation between errors
Correlation between Gap/Burst Correlations

- OLPC introduces correlation between gaps and bursts
 - If we now about the current state we can predict error free future
 - Gilbert-Elliot model cannot model such behavior
UMTS Link Layer Analysis

- Two scenarios
 - Static
 - Non-static

- BSC channel cannot model TB errors
 - Error bursts and gaps

- Non-static
 - Fading results in loss of all TBs/TTI
 - Small movement results in same error patterns as large scale movement

- Static
 - OLPC introduces correlation between error burst and gap
Summary of this lecture

• Measurement of real world data
 - Meaning of the “mean”

• Measuring errors on UMTS link layer
 - Record TB and TTI statistics
 - Analyze for different scenarios
 - Scenarios: static, non-static
 - All non-static are similar

• Burstiness of errors
 - Proper error model has to be chosen

• Correlation of the error pattern due to the OLPC
 - Lower layer signaling interferes with data plane!
Next time

• Modeling erroneous channels
 - BSC
 - Hidden Markov Model (HMM)

• Error prediction for a DCH channel
 - IP level
 - Video streaming
Thank you for your attention

Questions?
psvoboda@nt.tuwien.ac.at
Static Scenario: Clustering TB errors

- Analyze the error clusters
 - Minimum gap set to 12
 - Maximum of 24 TBs combined to a cluster