Coordinated Multi-Point (CoMP) in LTE
Wireless Communications Seminar

Stefan Schwarz

sschwarz@nt.tuwien.ac.at
March 27, 2014
Contents

Overview of CoMP in LTE
 CoMP Basics
 3GPP’s View of CoMP

Multi-User MIMO Transmission
 Mathematical System Model
 Block-Diagonalization Precoding
 Antenna Combining

Application Scenario

Conclusions
Estimated growth of mobile traffic (1 Exabyte = 10^{18} bytes); Ericsson traffic exploration tool [Ericsson, 2013b]

- Expected **exponential growth** in mobile data
- Mobile data traffic increases 10 – 17 fold between 2012 and 2017
- How to face the expected **Capacity Crunch**?
CoMP Motivation (2)

- Common approaches to improve network capacity
 - *Increase* the amount of available *spectrum*
 e.g., 200 kHz in GSM ⇒ 100 MHz in LTE-A (carrier-aggregation)
 - *Improve the PHY*: AMC, MIMO, OFDM
 - *Densify the network*: small cells (micro/pico/femto)

- Significant bandwidth expansions cannot be expected in the near future
 - Possible long-term solution *Millimeter Waves*
 [Rappaport et al., 2013] (30 – 300 GHz ⇔ 1 – 10 mm)

- Potential PHY improvements with *massive MIMO* [Marzetta, 2010]

- Feasible short-term solution: *increasing the network density*
 - Heterogeneous networks [Andrews, 2013]
 - Implies enlarging the cell edge
 - Increased inter-cell interference
CoMP Motivation (2)

- Common approaches to improve network capacity
 - Increase the amount of available spectrum e.g., 200 kHz in GSM ⇒ 100 MHz in LTE-A (carrier-aggregation)
 - Improve the PHY: AMC, MIMO, OFDM
 - Densify the network: small cells (micro/pico/femto)

- Significant bandwidth expansions cannot be expected in the near future
 - Possible long-term solution Millimeter Waves [Rappaport et al., 2013] (30 – 300 GHz ⇔ 1 – 10 mm)

- Potential PHY improvements with massive MIMO [Marzetta, 2010]

- Feasible short-term solution: increasing the network density
 - Heterogeneous networks [Andrews, 2013]
 - Implies enlarging the cell edge
 - Increased inter-cell interference
CoMP Motivation (2)

- Common approaches to improve network capacity
 - *Increase* the amount of available *spectrum*
 e.g., 200 kHz in GSM \Rightarrow 100 MHz in LTE-A (carrier-aggregation)
 - *Improve the PHY*: AMC, MIMO, OFDM
 - *Densify the network*: small cells (micro/pico/femto)

- Significant bandwidth expansions cannot be expected in the near future
 - Possible long-term solution *Millimeter Waves*
 [Rappaport et al., 2013] (30 – 300 GHz \leftrightarrow 1 – 10 mm)

- Potential PHY improvements with *massive MIMO* *[Marzetta, 2010]*

- Feasible short-term solution: *increasing the network density*
 - Heterogeneous networks *[Andrews, 2013]*
 - Implies enlarging the cell edge
 - Increased inter-cell interference
CoMP Principles

- Solution to cell edge problematic: remove the cell edge!

- Definition of CoMP:
 - Coordinated transmission/reception of data among several transmission/reception points to reduce or even exploit interference
 - Transmission/reception points:
 base stations, relays, access points, remote radio heads, user equipments

- Coordination is not for free: backhaul infrastructure
 - High bandwidth, low latency (beyond X2)
 - Fiber, dedicated micro-wave links
 - Central coordination unit
CoMP Principles

- Solution to cell edge problematic: *remove the cell edge!*

- Definition of CoMP:
 - *Coordinated transmission/reception* of data among several transmission/reception points to *reduce or even exploit interference*
 - *Transmission/reception points:* base stations, relays, access points, remote radio heads, user equipments

- Coordination is not for free: *backhaul infrastructure*
 - High bandwidth, low latency (beyond X2)
 - Fiber, dedicated micro-wave links
 - Central coordination unit
First 3GPP studies in Rel’10:

- **3GPP TR 36.814** - Further advancements for E-UTRA physical layer aspects
- **3GPP TR 36.912** - Feasibility study for further advancements for E-UTRA (LTE-A)
First 3GPP studies in Rel’10:

- 3GPP TR 36.814 - Further advancements for E-UTRA physical layer aspects
- 3GPP TR 36.912 - Feasibility study for further advancements for E-UTRA (LTE-A)

Introduction of CoMP into the standard in Rel’11:

- 3GPP TR 36.819 - Coordinated multi-point operation for LTE physical layer aspects
3GPP Time-Line

First 3GPP studies in Rel’10:
- 3GPP TR 36.814 - Further advancements for E-UTRA physical layer aspects
- 3GPP TR 36.912 - Feasibility study for further advancements for E-UTRA (LTE-A)

Introduction of CoMP into the standard in Rel’11:
- 3GPP TR 36.819 - Coordinated multi-point operation for LTE physical layer aspects

Consideration of non-ideal backhaul in Rel’12 — :
- 3GPP TR 36.874 - Coordinated multi-point operation for LTE with non-ideal backhaul
Classification of CoMP Concepts

- **Coordinated scheduling:**
 - Time/frequency sharing
 - Dynamic point selection
 - Inter-cell interference coordination
 - ICIC (Rel. 8), eICIC (Rel. 10), FeICIC (Rel. 11)
 - **Advantage:** low overhead (control info)

- **Coordinated beamforming:**
 - Spatial interference mitigation
 - Signal to leakage and noise ratio (SLNR)
 - [Sadek et al., 2007]
 - **Advantage:** good trade-off (CSI only)

- **Joint transmission:**
 - Exploitation of interference
 - Distributed antenna system (DAS)
 - **Advantage:** potentially highest performance
 - **Disadvantage:** overhead (CSI and data)
Classification of CoMP Concepts

- **Coordinated scheduling:**
 - Time/frequency sharing
 - Dynamic point selection
 - Inter-cell interference coordination
 - ICIC (Rel. 8), eICIC (Rel. 10), FeICIC (Rel. 11)
 - **Advantage:** low overhead (control info)

- **Coordinated beamforming:**
 - Spatial interference mitigation
 - Signal to leakage and noise ratio (SLNR)
 - [Sadek et al., 2007]
 - **Advantage:** good trade-off (CSI only)

- **Joint transmission:**
 - Exploitation of interference
 - Distributed antenna system (DAS)
 - **Advantage:** potentially highest performance
 - **Disadvantage:** overhead (CSI and data)
Classification of CoMP Concepts

- **Coordinated scheduling:**
 - Time/frequency sharing
 - Dynamic point selection
 - Inter-cell interference coordination (ICIC (Rel. 8), eICIC (Rel. 10), FeICIC (Rel. 11))
 - **Advantage:** low overhead (control info)

- **Coordinated beamforming:**
 - Spatial interference mitigation
 - Signal to leakage and noise ratio (SLNR) ([Sadek et al., 2007])
 - **Advantage:** good trade-off (CSI only)

- **Joint transmission:**
 - Exploitation of interference
 - Distributed antenna system (DAS)
 - **Advantage:** potentially highest performance
 - **Disadvantage:** overhead (CSI and data)
CoMP Scenarios considered by the 3GPP

Scenario 1: Intra-site CoMP

Scenario 2: Inter-site CoMP

Scenario 3: HetNet CoMP 1 (different cell-IDs, small cells)

Scenario 4: HetNet CoMP 2 (same cell-IDs, RRHs and relays)

HetNet... heterogeneous network, RRH... remote radio head
CoMP Scenarios considered by the 3GPP

- **Scenario 1:** *Intra-site CoMP*

HetNet... heterogeneous network, RRH... remote radio head
CoMP Scenarios considered by the 3GPP

- Scenario 1: *Intra-site CoMP*
- Scenario 2: *Inter-site CoMP*

HetNet... heterogeneous network, RRH... remote radio head
CoMP Scenarios considered by the 3GPP

- Scenario 1: *Intra-site CoMP*
- Scenario 2: *Inter-site CoMP*
- Scenario 3: *HetNet CoMP 1* (different cell-IDs, small cells)

HetNet... heterogeneous network, RRH... remote radio head
CoMP Scenarios considered by the 3GPP

- Scenario 1: *Intra-site CoMP*
- Scenario 2: *Inter-site CoMP*
- Scenario 3: *HetNet CoMP 1* (different cell-IDs, small cells)
- Scenario 4: *HetNet CoMP 2* (same cell-IDs, RRHS and relays)

HetNet... heterogeneous network, RRH... remote radio head

Stefan Schwarz
Channel State Information (CSI) Acquisition and Sharing

- Coordinated beamforming and joint transmission require **other-cell CSI**
- Extended **reference signals** to support other-cell CSI estimation
- 3GPP defines a **measurement set** for CSI reporting
- **Performance** and **overhead** increase with the size of the measurement set
Contents

Overview of CoMP in LTE
 CoMP Basics
 3GPP's View of CoMP

Multi-User MIMO Transmission
 Mathematical System Model
 Block-Diagonalization Precoding
 Antenna Combining

Application Scenario

Conclusions
Multi-User MIMO Broadcast Channel

\[\begin{align*}
\text{Base station} & \quad \text{Remote radio unit} \quad \text{User} \\
\text{Low-latency high-bandwidth connection} &
\end{align*} \]

\[y_u = G_u H_u F_u x_u \]

- Frequency-flat input-output relationship of user \(u \) (OFDM)
- Channel matrix \(H_u \in \mathbb{C}^{N_t \times N_r} \), linear transceivers \(G_u \in \mathbb{C}^{N_r \times L} , F_u \in \mathbb{C}^{N_t \times L} \)
- \(L \) ... streams per user, \(N_r \) ... receive antennas, \(N_t \) ... transmit antennas
- \(S \) = \(|S| \) ... users served in parallel
- Interesting case: \(L \leq N_r \leq N_t \)
Multi-User MIMO Broadcast Channel

Frequency-flat input-output relationship of user \(u \) (OFDM)

\[
y_u = y_u^{\text{intended signal}} + y_u^{\text{interference}} + y_u^{\text{noise}}
\]

\[
y_u = \underbrace{G_u^H H_u^H F_u x_u}_{\text{intended signal}} + \underbrace{G_u^H H_u^H \sum_{s \in S, s \neq u} F_s x_s}_{\text{interference}} + \underbrace{G_u^H z_u}_{\text{noise}}
\]

\[
\text{channel matrix } \ H_u \in \mathbb{C}^{N_t \times N_r}, \quad \text{linear transceivers } \ G_u \in \mathbb{C}^{N_r \times L}, \quad F_u \in \mathbb{C}^{N_t \times L}
\]

- \(L \ldots \) streams per user, \(N_r \ldots \) receive antennas, \(N_t \ldots \) transmit antennas
- \(S = |S| \ldots \) users served in parallel
- Interesting case: \(L \leq N_r \leq N_t \)
Multi-User MIMO Motivation

- Practical situation: $N_r \ll N_t$ (especially in joint transmission CoMP)

- **Single-user MIMO:**
 - Number of parallel users: $S = 1$
 - Number of spatial streams: $L \leq \min(N_r, N_t)$ [Telatar, 1999]
 - Multiplexing gain of base station cannot be exploited

- Remedy: *multi-user MIMO*
 - Serve multiple users in parallel $S \geq 1$ each over $L \leq N_r$ streams
 - **Advantage:** total number of streams $S \cdot L \leq N_t$ [Goldsmith et al., 2003]
 - Total multiplexing gain not confined by user capabilities

- **Questions:**
 - How to select the users S?
 - How to design the transceivers F_u, G_u?
Multi-User MIMO Motivation

- Practical situation: $N_r \ll N_t$ (especially in joint transmission CoMP)

- **Single-user MIMO:**
 - Number of parallel users: $S = 1$
 - Number of spatial streams: $L \leq \min(N_r, N_t)$ \[Telatar, 1999\]
 - Multiplexing gain of base station cannot be exploited

- Remedy: **multi-user MIMO**
 - Serve multiple users in parallel $S \geq 1$ each over $L \leq N_r$ streams
 - **Advantage:** total number of streams $S \cdot L \leq N_t$ \[Goldsmith et al., 2003\]
 - Total multiplexing gain not confined by user capabilities

- **Questions:**
 - How to select the users S?
 - How to design the transceivers F_u, G_u?
Transceiver Design

- Assume the schedule S to be given
- Nonlinear interference pre-cancellation *dirty paper coding* [Costa, 1983]
 - Suboptimal algorithmic attempts
 - *Vector-perturbation* precoding [Hochwald et al., 2005]
 - *Tomlinson-Harashima* based joint transceiver design [Mezghani et al., 2006]
 - Disadvantage: complexity
- Practically more relevant: *linear transceivers*
 - Linear interference pre-cancellation [Spencer et al., 2004]
 - *Zero-forcing* beamforming
 - *Block-diagonalization* precoding
 - *Iterative joint optimization*, e.g., based on MMSE criteria [Shi et al., 2008]
Transceiver Design

- Assume the schedule S to be given

- Nonlinear interference pre-cancellation *dirty paper coding* [Costa, 1983]
 - Suboptimal algorithmic attempts
 - *Vector-perturbation* precoding [Hochwald et al., 2005]
 - *Tomlinson-Harashima* based joint transceiver design [Mezghani et al., 2006]
 - Disadvantage: complexity

- Practically more relevant: *linear transceivers*
 - Linear interference pre-cancellation [Spencer et al., 2004]
 - *Zero-forcing* beamforming
 - *Block-diagonalization* precoding
 - *Iterative joint optimization*, e.g., based on MMSE criteria [Shi et al., 2008]
Considered Transceiver Architecture

- Problem of iterative approaches: large signaling overhead
- We consider non-iterative linear transceiver designs:
 - *Selfish* selection of G_u
 - *Block-diagonalization* precoding at base station
 - Selection of S based on achievable rate estimate
- Advantages of this approach:
 - *Reduced* computational *complexity* (closed-form solutions)
 - *Decreased* signaling *overhead* when $L < N_r$

\[
H_{u}^{\text{eff}} = H_u G_u \in \mathbb{C}^{N_t \times L} \text{ versus } H_u \in \mathbb{C}^{N_t \times N_r}
\]

(2)
Multi-User MIMO Transmission

Block-Diagonalization (BD) Precoding

- Assume for now G_u as given and $S = \{1, \ldots, S\}$

$$y_u = (H_u^{\text{eff}})^H F_u x_u + (H_{u}^{\text{eff}})^H \sum_{s=1}^{S} F_s x_s + G_u^H z_u$$

- Goal of BD precoding: *eliminate multi-user interference*

$$\left(H_s^{\text{eff}} \right)^H F_u = 0, \quad \forall s, u \in S \text{ and } s \neq u, \quad (3)$$

$$\text{rank} \left((H_{u}^{\text{eff}})^H F_u \right) = L, \quad \forall u \in S \quad (4)$$

- This can be achieved by selecting the precoders as follows $\forall u \in S$
Block-Diagonalization (BD) Precoding

- Assume for now G_u as given and $S = \{1, \ldots, S\}$

$$y_u = (H_u^{\text{eff}})^H F_u x_u + \left(\sum_{s=1}^{S} F_s x_s + G_u^H z_u \right)$$

- Goal of BD precoding: *eliminate multi-user interference*

$$\left(H_s^{\text{eff}} \right)^H F_u = 0, \quad \forall s, u \in S \text{ and } s \neq u, \quad (3)$$

$$\text{rank} \left(\left(H_u^{\text{eff}} \right)^H F_u \right) = L, \quad \forall u \in S \quad (4)$$

- This can be achieved by selecting the precoders as follows $\forall u \in S$

$$\tilde{H}_u = \left[H_1^{\text{eff}}, \ldots, H_{u-1}^{\text{eff}}, H_{u+1}^{\text{eff}}, \ldots, H_S^{\text{eff}} \right]^H \in \mathbb{C}^{(S-1)L \times N_t},$$

Stefan Schwarz
Multi-User MIMO Transmission

Block-Diagonalization (BD) Precoding

- Assume for now G_u as given and $S = \{1, \ldots, S\}$

$$y_u = \left(H_u^{\text{eff}} \right)^H F_u x_u + \left(H_u^{\text{eff}} \right)^H \sum_{s=1, s \neq u}^{S} F_s x_s + G_u^H z_u$$

- Goal of BD precoding: **eliminate multi-user interference**

$$(H_s^{\text{eff}})^H F_u = 0, \ \forall s, u \in S \text{ and } s \neq u,$$

$$\text{rank} \left(\left(H_u^{\text{eff}} \right)^H F_u \right) = L, \ \forall u \in S$$

- This can be achieved by selecting the precoders as follows $\forall u \in S$

$$\bar{H}_u = \left[H_1^{\text{eff}}, \ldots, H_{u-1}^{\text{eff}}, H_{u+1}^{\text{eff}}, \ldots, H_S^{\text{eff}} \right]^H \in \mathbb{C}^{(S-1)L \times N_t}, \quad F_u \in \text{null} \left(\bar{H}_u \right),$$

$$\text{rank} \left(F_u \right) = L$$

Stefan Schwarz
Block-Diagonalization (BD) Precoding (2)

- **Feasibility condition** for BD precoding

\[
\text{rank} \left(\mathbf{F}_u \right) = L \Rightarrow \text{rank} \left(\text{null} \left(\tilde{\mathbf{H}}_u \right) \right) = \max \left(0, N_t - (S - 1)L \right) = L
\]
\[
\Rightarrow N_t - (S - 1)L = L \Rightarrow S = \frac{N_t}{L} \tag{7}
\]

- A solution can be determined from a singular-value decomposition of \(\tilde{\mathbf{H}}_u \)

- Special case: zero-forcing beamforming \(L = 1 \)

\[
y_u = (\mathbf{h}^\text{eff}_u)^H \mathbf{f}_u x_u + (\mathbf{h}^\text{eff}_u)^H \sum_s f_s x_s + g^H_u z_u \tag{8}
\]

- Closed form solution

\[
\mathbf{F} = [\mathbf{f}_1, \ldots, \mathbf{f}_S] = \mathbf{H}^H \left(\mathbf{H} \mathbf{H}^H \right)^{-1}, \tag{9}
\]
\[
\mathbf{H} = \left[\mathbf{h}^\text{eff}_1, \ldots, \mathbf{h}^\text{eff}_S \right]^H \in \mathbb{C}^{S \times N_t} \tag{10}
\]
Block-Diagonalization (BD) Precoding (2)

- **Feasibility condition** for BD precoding

\[
\text{rank} \left(\mathbf{F}_u \right) = L \Rightarrow \text{rank} \left(\text{null} \left(\tilde{\mathbf{H}}_u \right) \right) = \max \left(0, N_t - (S - 1)L \right) = L
\]

\[
\Rightarrow N_t - (S - 1)L = L \Rightarrow S = \frac{N_t}{L} \tag{7}
\]

- A solution can be determined from a *singular-value decomposition* of \(\tilde{\mathbf{H}}_u \)

- Special case: *zero-forcing beamforming* \(L = 1 \)

\[
y_u = (\mathbf{h}^\text{eff}_u)^H \mathbf{f}_u \mathbf{x}_u + (\mathbf{h}^\text{eff}_u)^H \sum_s \mathbf{f}_s \mathbf{x}_s + \mathbf{g}^H_u \mathbf{z}_u \tag{8}
\]

- Closed form solution

\[
\mathbf{F} = [\mathbf{f}_1, \ldots, \mathbf{f}_S] = \mathbf{H}^H \left(\mathbf{H} \mathbf{H}^H \right)^{-1}, \tag{9}
\]

\[
\mathbf{H} = \left[\mathbf{h}^\text{eff}_1, \ldots, \mathbf{h}^\text{eff}_S \right]^H \in \mathbb{C}^{S \times N_t} \tag{10}
\]
Illustration of Zero-Forcing Beamforming

Zero interference conditions:

\[h_2^H f_1 = h_3^H f_1 = 0 \]

Intended signal power:

\[P_1 = |h_1^H f_1|^2 \]

\[\Rightarrow \text{Orthogonal user selection} \]

\[R_{ZF} \propto N_t \log \left(1 + \frac{P}{N_t} \log U\right) \propto R_{DPC} \]

[Yoo and Goldsmith, 2006, Boccardi and Huang, 2007]
Illustration of Zero-Forcing Beamforming

- Zero interference conditions:
 \[\mathbf{h}_2^H \mathbf{f}_1 = \mathbf{h}_3^H \mathbf{f}_1 = 0 \]

- Intended signal power:
 \[P_1 = |\mathbf{h}_1^H \mathbf{f}_1|^2 \]

\[\Rightarrow \text{Orthogonal user selection} \]

\[R_{ZF} \propto N_t \log \left(1 + \frac{P}{N_t} \log U \right) \propto R_{DPC} \]

[Yoo and Goldsmith, 2006, Boccardi and Huang, 2007]
Illustration of Zero-Forcing Beamforming

- Zero interference conditions:
 \[h_2^H f_1 = h_3^H f_1 = 0 \]

- Intended signal power:
 \[P_1 = |h_1^H f_1|^2 \]

\[y_1 = h_1^H f_1 x_1 + h_1^H f_2 x_2 + h_1^H f_3 x_3 \]
\[y_2 = h_2^H f_1 x_1 + h_2^H f_2 x_2 + h_2^H f_3 x_3 \]
\[y_3 = h_3^H f_1 x_1 + h_3^H f_2 x_2 + h_3^H f_3 x_3 \]

\[R_{ZF} \propto N_t \log \left(1 + \frac{P}{N_t} \log U \right) \propto R_{DPC} \]

[Yoo and Goldsmith, 2006, Boccardi and Huang, 2007]

Stefan Schwarz
Illustration of Zero-Forcing Beamforming

- Zero interference conditions:
 \[h_2^H f_1 = h_3^H f_1 = 0 \]

- Intended signal power:
 \[P_1 = |h_1^H f_1|^2 \]

- \(\Rightarrow \) Orthogonal user selection
 \[R_{ZF} \propto N_t \log \left(1 + \frac{P}{N_t} \log U \right) \propto R_{DPC} \]

[Yoo and Goldsmith, 2006, Boccardi and Huang, 2007]
Illustration of Zero-Forcing Beamforming

- Zero interference conditions:
 \[h_2^H f_1 = h_3^H f_1 = 0 \]

- Intended signal power:
 \[P_1 = |h_1^H f_1|^2 \]

- Orthogonal user selection

\[R_{ZF} \propto N_t \log \left(1 + \frac{P}{N_t} \log U \right) \propto R_{DPC} \]

[Yoo and Goldsmith, 2006, Boccardi and Huang, 2007]
Illustration of Zero-Forcing Beamforming

- Zero interference conditions:
 \[h_2^H f_1 = h_3^H f_1 = 0 \]

- Intended signal power:
 \[P_1 = |h_1^H f_1|^2 \]

- \(\Rightarrow \) **Orthogonal user selection**

 \[R_{ZF} \propto N_t \log \left(1 + \frac{P}{N_t} \log U \right) \propto R_{DPC} \]

 [Yoo and Goldsmith, 2006, Boccardi and Huang, 2007]
Multi-User MIMO Transmission

Channel State Information (CSI) Feedback

- Remember, the BD precoders are obtained by the base station from

\[F_u \in \text{null} (\tilde{H}_u), \quad \tilde{H}_u = \left[H_{1}^{\text{eff}}, \ldots, H_{u-1}^{\text{eff}}, H_{u+1}^{\text{eff}}, \ldots, H_{S}^{\text{eff}} \right]^H \]

- What *channel state information* does the base station need, i.e., what *feedback information* do the users have to provide?

- Notice, \(H_{j}^{\text{eff}} \) can be replaced with any matrix spanning the same subspace

\[H_{j}^{\text{eff}} \equiv \tilde{H}_j \in \mathbb{C}^{N_t \times L} \iff \text{span} \left(H_{j}^{\text{eff}} \right) = \text{span} \left(\tilde{H}_j \right), \quad (11) \]

\[(H_{j}^{\text{eff}})^H F_u = 0 \iff \tilde{H}_j^H F_u = 0 \quad (12) \]

⇒ the users have to convey \(\text{span} \left(H_{j}^{\text{eff}} \right) \) to the base station

- This subspace is a point on the *Grassmann manifold* of \(L \) dimensional subspaces in the \(N_t \) dimensional complex Euclidean space.
Multi-User MIMO Transmission

Channel State Information (CSI) Feedback

- Remember, the BD precoders are obtained by the base station from
 \[F_u \in \text{null} \left(\tilde{H}_u \right), \quad \tilde{H}_u = \left[H_{\text{eff}}^1, \ldots, H_{\text{eff}}^{u-1}, H_{\text{eff}}^{u+1}, \ldots, H_{\text{eff}}^S \right]^H \]

- What *channel state information* does the base station need, i.e., what *feedback information* do the users have to provide?

- Notice, \(H_{\text{eff}}^j \) can be replaced with any matrix spanning the same subspace

 \[H_{\text{eff}}^j \equiv \tilde{H}_j \in \mathbb{C}^{N_t \times L} \iff \text{span} \left(H_{\text{eff}}^j \right) = \text{span} \left(\tilde{H}_j \right), \quad (11) \]
 \[(H_{\text{eff}}^j)^H F_u = 0 \iff \tilde{H}_j^H F_u = 0 \quad (12) \]

 \[\Rightarrow \text{ the users have to convey } \text{span} \left(H_{\text{eff}}^j \right) \text{ to the base station} \]

- This subspace is a point on the *Grassmann manifold* of \(L \) dimensional subspaces in the \(N_t \) dimensional complex Euclidean space

Stefan Schwarz
Channel State Information (CSI) Feedback (2)

- Feedback channel with limited capacity ⇒ \(\text{span}(H_{\text{eff}}^j) \) must be quantized
 ⇒ Grassmannian quantization [Love and Heath, Jr., 2005]
- The subspace is represented with an orthonormal basis \(\tilde{H}_j \in \mathbb{C}^{N_t \times L} \)

\[
\text{span}(H_{\text{eff}}^j) = \text{span}(\tilde{H}_j), \quad \tilde{H}_j^H\tilde{H}_j = I_L
\]

- For quantization a codebook is employed \((b \text{ bits of feedback})^1\)

\[
Q = \left\{ Q_i \in \mathbb{C}^{N_t \times L} \mid Q_i^HQ_i = I_L, \ i \in \{1, \ldots, 2^b\} \right\}
\]

- The quantized subspace is obtained from

\[
\hat{H}_j = \arg\min_{Q_i \in Q} d_c^2(H_{\text{eff}}^j, Q_i) = \arg\min_{Q_i \in Q} L - \text{tr} \left(\hat{H}_j^HQ_iQ_i^H\hat{H}_j \right)
\]

- \(d_c^2(\cdot, \cdot) \) subspace chordal distance

1 [Ravindran and Jindal, 2008, Schwarz et al., 2013a, Schwarz et al., 2013b]

Stefan Schwarz
Multi-User MIMO Transmission

Channel State Information (CSI) Feedback (2)

- Feedback channel with limited capacity $\Rightarrow \text{span} \left(H_{\text{eff}}^j \right)$ must be quantized \Rightarrow Grassmannian quantization [Love and Heath, Jr., 2005]

- The subspace is represented with an orthonormal basis $\tilde{H}_j \in \mathbb{C}^{N_t \times L}$

\[
\text{span} \left(H_{\text{eff}}^j \right) = \text{span} \left(\tilde{H}_j \right), \quad \tilde{H}_j^H \tilde{H}_j = I_L \quad (13)
\]

- For quantization a codebook is employed (b bits of feedback)1

\[
Q = \left\{ Q_i \in \mathbb{C}^{N_t \times L} \mid Q_i^H Q_i = I_L, i \in \{1, \ldots, 2^b\} \right\} \quad (14)
\]

- The quantized subspace is obtained from

\[
\hat{H}_j = \arg\min_{Q_i \in Q} d_c^2 \left(H_{\text{eff}}^j, Q_i \right) = \arg\min_{Q_i \in Q} L - \text{tr} \left(\tilde{H}_j^H Q_i Q_i^H \tilde{H}_j \right) \quad (15)
\]

- $d_c^2 (\cdot, \cdot)$ subspace chordal distance

1 [Ravindran and Jindal, 2008, Schwarz et al., 2013a, Schwarz et al., 2013b]

Stefan Schwarz
Multi-User MIMO versus Single-User MIMO

- LTE compliant system with $N_t = 8$, $N_r = 2$ and $U = 4$ users
- Low user mobility: 5 km/h @ 2 GHz center frequency
- Multi-user MIMO: $S = 4$ user spatially multiplexed with $L = 2$ streams each
- Single-user MIMO: $S = 1$ user selected with $L = 2$ streams

RCSQ... random channel subspace quantization [Ravindran and Jindal, 2008]
ACSQ... adaptive channel subspace quantization [Schwarz et al., 2013b]
Maximum eigenmode transmission (MET)

\[
H_u = U_u \Sigma_u V_u^H \Rightarrow G_u^{(\text{MET})} = V_u(:,1:L),
\]

\[
H_u^{\text{eff}} = U_u(:,1:L) \text{ diag } (\sigma_1,u,\ldots,\sigma_L,u)
\]

Select \(L \) maximum eigenmodes out of \(N_r \)

Theorem (MET)

\(S \) users are served with \(L \) spatial streams each over i.i.d. Rayleigh fading channels, using \(b \) bits to quantize and feedback the channel state information.

\[
R_{\text{MET}} - R_{\text{MET-Quant}} \leq \sum_{\ell=1}^{L} \log_2 \left(1 + \rho c_{\text{MET}}^{(\ell)} D_{\text{MET}} \right),
\]

\[
D_{\text{MET}} \propto 2^{-\frac{b}{L(N_t-L)}}, \quad \rho = \frac{P}{\sigma_0^2 S L}, \quad \rho_{\text{dB}} = 10 \log_{10} (\rho)
\]

MET feedback bit-scaling for constant rate offset:

\[
\frac{\partial b}{\partial \rho_{\text{dB}}} \propto L (N_t - L)
\]

[Schwarz and Rupp, 2013b]
Maximum eigenmode transmission (MET)

\[H_u = U_u \Sigma_u V_u^H \Rightarrow G_u^{(MET)} = V_u(:, 1 : L), \]
\[H_u^{\text{eff}} = U_u(:, 1 : L) \text{ diag } (\sigma_{1,u}, \ldots, \sigma_{L,u}) \]

Select \(L \) maximum eigenmodes out of \(N_r \)

Theorem (MET)

\(S \) users are served with \(L \) spatial streams each over i.i.d. Rayleigh fading channels, using \(b \) bits to quantize and feedback the channel state information.

\[R_{\text{MET}} - R_{\text{MET-Quant}} \leq \sum_{\ell=1}^{L} \log_2 \left(1 + \rho \frac{c_{\text{MET}}^{(\ell)} D_{\text{MET}}}{\sigma^2} \right), \]
\[D_{\text{MET}} \propto 2^{- \frac{b}{L(N_t - L)}}, \quad \rho = \frac{P}{\sigma^2 S L}, \quad \rho_{\text{dB}} = 10 \log_{10} (\rho) \]

MET feedback bit-scaling for constant rate offset:
\[\frac{\partial b}{\partial \rho_{\text{dB}}} \propto L (N_t - L) \]

[Schwarz and Rupp, 2013b]
Subspace quantization based combining (SQBC)

\[
\left\{ G_u^{(SQBC)}, \hat{H}_u^{(SQBC)} \right\} = \arg\min_{G, Q_j \in Q_u} d_c^2 (H_u^{\text{eff}}, Q_j) = \arg\min_{G, Q_j \in Q_u} d_c^2 (H_u G, Q_j)
\]

\[(21) \]

- Solution for \(G_u^{(SQBC)} \) available in closed form
- \textbf{Minimize} the subspace \textbf{quantization error}

\textbf{Theorem (SQBC)}

\(S \) users are served with \(L \) spatial streams each over i.i.d. Rayleigh fading channels, using \(b \) bits to quantize and feedback the channel state information.

\[
R_{BD}^{(L)} - R_{SQBC}^{(L,N_r)} \leq L \log_2 \left(1 + \rho c_{SQBC} D_{SQBC} \right) + d_{SQBC}^{(L,N_r)}, \quad D_{SQBC} \propto 2^{-\frac{b}{L(N_t-N_r)}}
\]

\[(22) \]

\textbf{SQBC feedback bit-scaling:}

\[
\frac{\partial b}{\partial \rho_{dB}} \propto L (N_t - N_r), \quad \left(\text{MET: } L (N_t - L) \right)
\]

\[(23) \]

[Schwarz and Rupp, 2013a, Schwarz and Rupp, 2013b]
Subspace quantization based combining (SQBC)

\[
\left\{ \mathbf{G}^{(\text{SQBC})}_u, \mathbf{H}^{(\text{SQBC})}_u \right\} = \arg\min_{\mathbf{G}, \mathbf{Q}_j \in \mathcal{Q}_u} d_c^2 \left(\mathbf{H}^{\text{eff}}_u, \mathbf{Q}_j \right) = \arg\min_{\mathbf{G}, \mathbf{Q}_j \in \mathcal{Q}_u} d_c^2 \left(\mathbf{H}_u \mathbf{G}, \mathbf{Q}_j \right) \tag{21}
\]

- Solution for \(\mathbf{G}_u^{(\text{SQBC})} \) available in closed form
- **Minimize** the subspace quantization error

Theorem (SQBC)

\(S \) users are served with \(L \) spatial streams each over i.i.d. Rayleigh fading channels, using \(b \) bits to quantize and feedback the channel state information.

\[
R^{(L)}_{\text{BD}} - R^{(L, N_r)}_{\text{SQBC}} \leq L \log_2 \left(1 + \rho c_{\text{SQBC}} D_{\text{SQBC}} \right) + d^{(L, N_r)}_{\text{SQBC}}, \quad D_{\text{SQBC}} \propto 2^{-\frac{b}{L(N_t - N_r)}} \tag{22}
\]

SQBC feedback bit-scaling:

\[
\frac{\partial b}{\partial \rho_{\text{dB}}} \propto L (N_t - N_r), \quad \left(\text{MET: } L (N_t - L) \right) \tag{23}
\]

[Schwarz and Rupp, 2013a, Schwarz and Rupp, 2013b]
MET versus SQBC

- $N_t = 6$ transmit antennas, $N_r \in \{2, \ldots, 5\}$ receive antennas, $L = 2$ data streams
- Throughput loss of SQBC with perfect CSI at the base station
MET versus SQBC

- $N_t = 6$ transmit antennas, $N_r \in \{2, \ldots, 5\}$ receive antennas, $L = 2$ data streams
- Throughput loss of SQBC with perfect CSI at the base station
MET versus SQBC

- $N_t = 6$ transmit antennas, $N_r \in \{2, \ldots, 5\}$ receive antennas, $L = 2$ data streams
- Throughput loss of SQBC with perfect CSI at the base station
MET versus SQBC

- $N_t = 6$ transmit antennas, $N_r \in \{2, \ldots, 5\}$ receive antennas, $L = 2$ data streams
- Throughput loss of SQBC with perfect CSI at the base station
Multi-User MIMO Transmission

MET versus SQBC

$N_t = 6$ transmit antennas, $N_r \in \{2, \ldots, 5\}$ receive antennas, $L = 2$ data streams

- Throughput loss of SQBC with perfect CSI at the base station
- Feedback overhead for 1 bit/s/Hz rate loss with random vector quantization
- Significant reduction of feedback overhead with SQBC for moderate SNR loss
Multi-User MIMO Transmission

MET versus SQBC

- $N_t = 6$ transmit antennas, $N_r \in \{2, \ldots, 5\}$ receive antennas, $L = 2$ data streams
- Throughput loss of SQBC with perfect CSI at the base station
- Feedback overhead for 1 bit/s/Hz rate loss with random vector quantization
- Significant reduction of feedback overhead with SQBC for moderate SNR loss
MET versus SQBC

- $N_t = 6$ transmit antennas, $N_r \in \{2, \ldots, 5\}$ receive antennas, $L = 2$ data streams
- Throughput loss of SQBC with perfect CSI at the base station
- Feedback overhead for 1 bit/s/Hz rate loss with random vector quantization
- Significant reduction of feedback overhead with SQBC for moderate SNR loss
SQBC versus MET (2)

- $N_t = 6$ transmit antennas, $N_r \in \{2, 4, 5\}$ receive antennas, $L = 2$ streams
- Comparison of performance with perfect and quantized CSIT
- Feedback overhead scaled for constant rate loss with $N_r = 5$: $b \in [0, 17]$ bits.

Graph:
- 95% confidence interval
- SNR [dB]
- Achievable sum rate [bits/s/Hz]
- $N_r = 5$

Legend:
- SQBC perfect CSIT
- SQBC quant. CSIT

CSIT... channel state information at the transmitter

Stefan Schwarz
SQBC versus MET (2)

- $N_t = 6$ transmit antennas, $N_r \in \{2, 4, 5\}$ receive antennas, $L = 2$ streams
- Comparison of performance with perfect and quantized CSIT
- Feedback overhead scaled for constant rate loss with $N_r = 5$: $b \in [0, 17]$ bits.

![Graph showing achievable sum rate vs. SNR for SQBC with perfect and quantized CSIT, for $N_r = 4$ and $N_r = 5$.](image-url)

CSIT... channel state information at the transmitter

Stefan Schwarz
SQBC versus MET (2)

- $N_t = 6$ transmit antennas, $N_r \in \{2, 4, 5\}$ receive antennas, $L = 2$ streams
- Comparison of performance with perfect and quantized CSIT
- Feedback overhead scaled for constant rate loss with $N_r = 5$: $b \in [0, 17]$ bits.

![Graph showing achievable sum rate versus SNR for different values of N_r.]
SQBC versus MET (2)

- $N_t = 6$ transmit antennas, $N_r \in \{2, 4, 5\}$ receive antennas, $L = 2$ streams
- Comparison of performance with perfect and quantized CSIT
- Feedback overhead scaled for constant rate loss with $N_r = 5$: $b \in [0, 17]$ bits.

![Graph showing achievable sum rate vs SNR for different N_r values and CSIT types.](image-url)
Contents

Overview of CoMP in LTE
 CoMP Basics
 3GPP’s View of CoMP

Multi-User MIMO Transmission
 Mathematical System Model
 Block-Diagonalization Precoding
 Antenna Combining

Application Scenario

Conclusions
Evaluated cellular networking architectures

Macro only network:
- 120° sectorized antennas, $N_t = 8$ transmit antennas per sector
- Hexagonal grid (2 tiers of interferers)

Macro-micro overlay network:
- $N_t = 4$ macro antennas per sector + two micros with $N_t = 2$ antennas each
- Independent operation of macros and micros

Macro network with remote radio units (RRUs):
- Two RRUs per sector with $N_t = 2$ omnidirectional antennas each
- Joint transmission CoMP between macros and RRUs

Same total transmit *power* and *same number of antennas* in all networks

Stefan Schwarz
Evaluated cellular networking architectures

Macro only network:
- 120° sectorized antennas, $N_t = 8$ transmit antennas per sector
- Hexagonal grid (2 tiers of interferers)

Macro-micro overlay network:
- $N_t = 4$ macro antennas per sector + two micros with $N_t = 2$ antennas each
- Independent operation of macros and micros

Macro network with remote radio units (RRUs):
- Two RRUs per sector with $N_t = 2$ omnidirectional antennas each
- Joint transmission CoMP between macros and RRUs

Same total transmit power and same number of antennas in all networks

Stefan Schwarz
Evaluated cellular networking architectures

Macro only network:
- 120° sectorized antennas, $N_t = 8$ transmit antennas per sector
- Hexagonal grid (2 tiers of interferers)

Macro-micro overlay network:
- $N_t = 4$ macro antennas per sector + two micros with $N_t = 2$ antennas each
- Independent operation of macros and micros

Macro network with remote radio units (RRUs):
- Two RRU per sector with $N_t = 2$ omnidirectional antennas each
- Joint transmission CoMP between macros and RRU

Same total transmit **power** and **same number of antennas** in all networks

Stefan Schwarz
Macro Network versus Macro-Micro Overlay Network

- **Low mobility scenario (5 km/h), 8 bit of feedback for CSI quantization**
- **Similar performance with accurate CSIT**
- **Significant gain with** micros and **memoryless quantization** (macro diversity)
- **Reasons for the observed behavior:**
 - No isolation between macro and micro layers (e.g., wall loss)
 - Same total transmit power and total number of transmit antennas
Macro-only Network versus Macro with RRUs

- **Performance improvement with remote radio units:**
 - Perfect CSIT and predictive quantization: ~ 30 – 40%
 - Memoryless quantization: ~ 100%
 - Reduced degradation with memoryless quantization (macro-diversity exploited)
Performance Comparison - Impact of Feedback Overhead

Macro/Micro

- Improvement with micro base stations @ low quantization accuracy
 - Macro network falls back to single-user MIMO
 - Spatial reuse with micros — multiplexing of several users within the same area
Performance Comparison - Impact of Feedback Overhead

- **Macro/Micro**
 - 95% confidence interval
 - 8x2 PedC 1.4MHz 8bit 8UE
 - 8x2 PedC 1.4MHz 8bit 8UE

- **Macro/RRUs**
 - 95% confidence interval
 - 8x2 PedC 1.4MHz 8bit 8UE

- **Improvement with micro base stations @ low quantization accuracy**
 - Macro network falls back to single-user MIMO
 - Spatial reuse with micros — multiplexing of several users within the same area

- **Performance with remote radio units always better**
 - Additional macro-diversity
 - Gain of joint transmission CoMP

Stefan Schwarz
Contents

Overview of CoMP in LTE
 CoMP Basics
 3GPP’s View of CoMP

Multi-User MIMO Transmission
 Mathematical System Model
 Block-Diagonalization Precoding
 Antenna Combining

Application Scenario

Conclusions
Summary and Conclusions

- Facing the expected capacity crunch: *network densification*
- This implies increased *inter-cell interference*
- Solution: *coordination* of transmissions (CoMP)
 - Scheduling, beamforming, joint transmission
 - *Multi-user MIMO* transmission (joint transmission)
 - Dirty paper coding (nonlinear, highly complex)
 - More practical: linear transceivers
 - *Block-Diagonalization* precoding with selfish antenna combining
Summary and Conclusions

- Facing the expected capacity crunch: network densification
- This implies increased inter-cell interference
- Solution: coordination of transmissions (CoMP)
 - Scheduling, beamforming, joint transmission
- Multi-user MIMO transmission (joint transmission)
 - Dirty paper coding (nonlinear, highly complex)
 - More practical: linear transceivers
- Block-Diagonalization precoding with selfish antenna combining
Coordinated Multi-Point (CoMP) in LTE
Wireless Communications Seminar

Stefan Schwarz

sschwarz@nt.tuwien.ac.at
March 27, 2014
References

Seven ways that HetNets are a cellular paradigm shift.
IEEE Communications Magazine, 51(3):136–144.

A near-optimum technique using linear precoding for the MIMO broadcast channel.
In *IEEE Int. Conf. on Acoustics, Speech and Signal Processing*, volume 3.

white paper.

Writing on dirty paper (corresp.).

Ericsson (2013a).
Ericsson mobility report.
white paper.

Ericsson (2013b).
Traffic exploration tool.
http://www.ericsson.com/TET.
[Online; accessed 03-July-2013].

Capacity limits of MIMO channels.
IEEE Journal on Selected Areas in Communications, 21(5):684–702.
References II

A vector-perturbation technique for near-capacity multiantenna multiuser communication-part II: perturbation.

Limited feedback unitary precoding for spatial multiplexing systems.

Noncooperative cellular wireless with unlimited numbers of base station antennas.

Iterative THP transceiver optimization for multi-user MIMO systems based on weighted sum-MSE minimization.
In IEEE 7th Workshop on Signal Processing Advances in Wireless Communications, pages 1–5.

Millimeter wave mobile communications for 5G cellular: It will work!
IEEE Access, 1:335–349.

Limited feedback-based block diagonalization for the MIMO broadcast channel.
References III

