Name:

You are allowed to use your own copy of the lecture notes, a formulary and a calculator. Any other documents, especially pre-calculated examples, are forbidden.

Problem 1 (15 points) Consider a random variable X with "triangular" probability density function (pdf)

$$f_X(x) = \begin{cases} 2 \cdot (1-x), & \text{if } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

- a) Sketch the pdf of X.
- b) Calculate the mean and variance of X.
- c) Suppose X_1 and X_2 are statistically independent random variables and each has the same pdf $f_{X_1}(x) = f_{X_2}(x) = f_X(x)$. Find the pdf $f_Y(y)$ of $Y = X_1 + X_2$.
- d) Calculate the mean and variance of Y without using its pdf $f_Y(y)$, calculated in c).
- e) Find the probability $P\{Y > 1\}$.

Problem 2 (20 points) Consider a Gaussian distributed random variable $A \sim \mathcal{N}(0, \sigma^2)$ and a discrete random variable $B \in \{-1, 1\}$ with $P\{B = 1\} = P\{B = -1\} = 1/2$, i.e., $p_B(b) = 1/2[\delta(b-1) + \delta(b+1)]$. The random variables A and B are statistically independent.

- a) Calculate the joint probability density function (pdf) $f_{A,W}(a, w)$ for W = AB.
- b) Calculate the marginal pdf $f_W(w)$.
- c) Find out whether W and A are statistically independent and/or uncorrelated and/or orthogonal. Justify your answer.
- d) Repeat subtasks a) c) for the case: A is a discrete random variable with probability $P\{A = 1\} = P\{A = -1\} = 1/2$ and B is a Gaussian distributed random variable with $\mathcal{N}(0, \sigma^2)$.

Problem 3 (15 points) Consider the random processes

$$Y_1[n] = A[n] \cos(\theta_0 n)$$

$$Y_2[n] = A[n] \cos(\theta_0 n + \Phi)$$

$$Y_3[n] = A[n] \cos(\theta_0 n) + B[n] \sin(\theta_0 n).$$

where θ_0 is a constant frequency. The random processes A[n] and B[n] are jointly WSS and the random variable Φ is uniformly distributed in the interval $[-\pi, \pi[$ and statistically independent of A[n].

- a) Calculate the means of $Y_1[n], Y_2[n], \text{ and } Y_3[n].$
- b) Calculate the autocorrelation functions of $Y_1[n], Y_2[n], \text{ and } Y_3[n].$
- c) Are $Y_1[n]$ and $Y_2[n]$ WSS or wide-sense cyclostationary? Justify your answer. Calculate the Period N_0 if the random processes are wide-sense cyclostationary.
- d) Under which conditions for A[n] and B[n] is $Y_3[n]$ WSS?

Problem 4 (20 points) Consider a zero-mean random vector $\underline{X} = \begin{pmatrix} X_1 & X_2 \end{pmatrix}^T$ corrupted by a zero-mean noise vector $\underline{Y} = \begin{pmatrix} Y_1 & Y_2 \end{pmatrix}^T$ that is statistically independent of \underline{X} . At the receiver, the vector $\underline{Z} = \underline{X} + \underline{Y}$ is observed. Let

$$\underline{\underline{R}}_{\underline{X}} = \left(\begin{array}{cc} 2.5 & \alpha \\ \beta & 2.5 \end{array} \right), \qquad \underline{\underline{R}}_{\underline{Y}} = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right).$$

- a) Specify β in terms of α and find the possible value ranges for α and β .
- b) For $\alpha = 1$, find the homogeneous LMMSE estimator of X.
- c) Find the corresponding minimum mean square error ε_{\min} .
- d) For arbitrary α , find the eigenvalues λ_k and orthonormal eigenvectors \underline{u}_k of $\underline{\underline{R}}_{\underline{X}}$. Show that for $\underline{\underline{U}} = (\underline{u}_1 \ \underline{u}_2)$, the random vector $\underline{\underline{W}} = \underline{\underline{U}}^T \underline{X}$ consists of orthogonal elements.
- e) Calculate the correlation matrix of the random vector $\underline{V} = \underline{\underline{U}}\underline{Z}$. Are the elements of \underline{V} orthogonal?