Christian Doppler Laboratory for Dependable Wireless Connectivity for the Society in Motion

Linking to 5G Research, Developments and Standardization
Annual Open Day and Workshop

Stefan Schwarz
15.11.2016
CD-Lab Overview

Module 1:
Non-Orthogonal Multicarrier and Massive MIMO for High-Mobility

NOKIA

The Vienna mmWave Test Bed

Module 2:
Millimeter Wave Transmission and Ad-Hoc Networks for High-Mobility

A1

Module 3:
HetNets and DASs for Masses of Mobile Users

KATHREIN

The Vienna LTE and 5G Simulators

The Vienna MIMO and Rotary Test Beds
Contents

Overview of 5G Developments

Relation between our CD-Lab and 5G

Conclusion
5G – Why Yet Another Generation?

- Development from 2G to 3G/4G was driven by the mobile phone
 - Transition from telephony to data services
 - Improvements in capacity, data rate, latency
- Prime goal of 5G: One network — many business cases
5G – Why Yet Another Generation?

- Development from 2G to 3G/4G was driven by the mobile phone
 - Transition from **telephony to data services**
 - **Improvements** in capacity, data rate, latency
- Prime goal of 5G: **One network — many business cases**

![Diagram showing 5G use cases](image-url)
5G – Why Yet Another Generation?

- Development from 2G to 3G/4G was driven by the mobile phone
 - Transition from **telephony to data services**
 - **Improvements** in capacity, data rate, latency
- Prime goal of 5G: **One network — many business cases**
5G – Why Yet Another Generation?

- Development from 2G to 3G/4G was driven by the mobile phone
 - Transition from telephony to data services
 - Improvements in capacity, data rate, latency
- Prime goal of 5G: One network — many business cases
5G – Why Yet Another Generation?

- Development from 2G to 3G/4G was driven by the mobile phone
 - Transition from **telephony to data services**
 - **Improvements** in capacity, data rate, latency
- Prime goal of 5G: **One network — many business cases**
Development from 2G to 3G/4G was driven by the mobile phone

- Transition from telephony to data services
- Improvements in capacity, data rate, latency

Prime goal of 5G: One network — many business cases
5G – Why Yet Another Generation?

- Development from 2G to 3G/4G was driven by the mobile phone
 - Transition from telephony to data services
 - **Improvements** in capacity, data rate, latency
- Prime goal of 5G: One network — many business cases
Different applications map to different requirements

Virtual network slicing to support individual key performance indicators
Automated driving: advantages of information exchange

- Expansion of **sensing range** (blind-spots, blockages)
- Higher level of **traffic coordination** (platooning, intersection scheduling)
- **Better informed** decisions in safety-relevant situations

Yet, necessary dependence on communication must be avoided
3GPP Roadmap towards 5G

- **LTE 3.5G**
 - CA - 5CC (100MHz)
 - MIMO 8 streams
 - 20MHz
 - MIMO 4 streams

- **LTE-A 4G**
 - CoMP

- **FDD/TDD CA**
 - D2D
 - Dual connectivity

- **CA - 32CC (640MHz)**
 - FD-MIMO
 - Narrowband IoT
 - LTE-U

- **IMT 2020**

- **5G Era**

- **5G**
 - LTE-A Pro

3G Era

4G Development

4G Era

5G Development

5G Era
3GPP Roadmap towards 5G

Maintain backwards compatibility
Existing spectrum below 3.5GHz

„Unrestricted“ play-ground
(Non)-standalone
New spectrum below and above 3.5GHz

R14:
- latency - shorter TTI, instant UL
- LTE-U improvements
- FD-MIMO enhancements
- MTC, V2X

Channel modeling for >6GHz
- Hot-spot capacity boost
- Ultra-lean design
- Multi-site beamforming
- Flexible multicarrier
Contents

Overview of 5G Developments

Relation between our CD-Lab and 5G

Conclusion
CD-Lab Overview

MODULE 1: PHY Enhancements

MODULE 2: Innovative Technologies

MODULE 3: Network Architecture

Flexible Multicarrier FD/Massive MIMO mmWave Technology Vehicular Networks HetNets

NOKIA A1 KATHREIN
Adaptation of modulation scheme to channel characteristics and user requirements

- **FBMC**
 - Per-subcarrier filtered multicarrier
 - Highest bandwidth efficiency
 - Parameter optimization w.r.t. channel
 - MIMO enhancements
 - Not a candidate for LTE-A Pro

- **filtered OFDM**
 - Post-filtering of OFDM
 - Improved spectral properties
 - Multi-user parameter optimization
 - Candidate considered by the 3GPP
Three-dimensional doubly-directional channel modeling

System level investigations of 3D beamforming ⇒ F. Ademaj

FD/Massive MIMO with realistic antenna arrays ⇒ S. Pratschner
Measurement-based mmWave channel characterization ⇒ E. Zöchmann
 - Delay/Doppler-spread, directional channel properties

Cellular-assisted V2X communications ⇒ B. Ramos-Elbal
 - Enhancing 3GPP LTE and 5G developments
 - Cooperation of technologies (cellular, ad-hoc DSRC)

mmWave technology in V2X communications
 - Joint radar sensing and communication
 - Raw sensor data exchange versus pre-processed data
Measurement-based mmWave channel characterization ⇒ E. Zöchmann
 • Delay/Doppler-spread, directional channel properties

Cellular-assisted V2X communications ⇒ B. Ramos-Elbal
 • Enhancing 3GPP LTE and 5G developments
 • Cooperation of technologies (cellular, ad-hoc DSRC)

mmWave technology in V2X communications
 • Joint radar sensing and communication
 • Raw sensor data exchange versus pre-processed data
Dependable Wireless Connectivity for the Society in Motion

mmWave Technology and V2X – CD-Lab Research

- Measurement-based mmWave channel characterization ⇒ E. Zöchmann
 - Delay/Doppler-spread, directional channel properties

- Cellular-assisted V2X communications ⇒ B. Ramos-Elbal
 - Enhancing 3GPP LTE and 5G developments
 - Cooperation of technologies (cellular, ad-hoc DSRC)

- mmWave technology in V2X communications
 - Joint radar sensing and communication
 - Raw sensor data exchange versus pre-processed data
Dependable Wireless Connectivity for the Society in Motion

Simulator Development

- Enabling standard-compliant and beyond-standard simulations
- Open source distribution – reproducibility
- System level: basis for investigations on heterogeneous networks
Journal and Magazine papers:

Conference publications: 18 papers
Contents

Overview of 5G Developments

Relation between our CD-Lab and 5G

Conclusion
Conclusion

▷ **5G standardization is ramping up** to meet the IMT2020 deadline

▷ We are continuously aligning with standardization in order to **explore and develop methods beyond the standard**

▷ Our research topics are well-positioned within the **high-mobility segment** of 5G developments

▷ Early disclosure: CD-lab **expansion plans**

 Joint research-module with renowned Austrian railroad company

 Research focus: big data analysis in public transportation
Conclusion

- **5G standardization is ramping up** to meet the IMT2020 deadline

- We are continuously aligning with standardization in order to **explore and develop methods beyond the standard**

- Our research topics are well-positioned within the **high-mobility segment** of 5G developments

- Early disclosure: CD-lab **expansion plans**

 Joint research-module with renowned Austrian railroad company

 Research focus: big data analysis in public transportation
Christian Doppler Laboratory for
Dependable Wireless Connectivity for the Society in Motion

www.nt.tuwien.ac.at/christian-doppler-laboratory

